Saturday, April 18, 2009

Eliminate Shower Leaks

INSTALLING A COMPOSITE SHOWER PAN IS FAST AND EASY. Before discussing the simple steps to install a composite shower pan, I felt that some clarification and definitions are necessary because not all shower pans are alike.

WHAT IS IN A NAME? A roof is a roof, although there are many different roofing systems and roofing materials. Not true with shower pans. They are often interchangeably called a shower pan, shower pan liner, shower pan membrane liner, waterproof barrier, shower base, shower tray, or shower receptor. Yet, each has a different meaning depending on context and each are available in a variety of materials.

Bob Vilas web site defines a SHOWER PAN as The base, containing a water drain, of the shower enclosure. And a SHOWER RECEPTOR as A one-piece base (floor) unit used as a shower, for example, to catch water and direct it to a center drain.

For the sake of clarity, I offer the following definitions.

SHOWER PAN & SHOWER BASE A finished area that is capable of retaining and directing water to the drain plus it doesnt require tiling once installed. The shower pan or base has a drain hole, sloped floor to properly direct water to the drain hole, sidewalls, and a threshold (entrance to the shower that forms a curb to keep water from running out onto the bathroom floor). A shower pan is synonymous with a shower base.

SHOWER PAN LINER, MEMBRANE LINER, & WATERPROOF BARRIER A barrier, usually a plastic sheet or membrane, that is intended to trap water that penetrates the shower floor tile, grout, and mortar under the tile and force the water to flow to the drain. As long as it doesnt leak, it prevents water from reaching the sub-floor and surrounding wall enclosure. The liner is a component within a constructed shower pan. A shower pan liner is synonymous with a shower pan membrane liner and a waterproof barrier.

SHOWER TRAY & SHOWER RECEPTOR A shower tray is synonymous with a shower receptor. Both are used in place of a liner. They serve the same function as the liner, but are pre-formed to eliminate some of the installation steps necessary when using a liner.

Shower pan liners, shower trays, and shower receptors are all used in conjunction with the construction of a shower pan that has a tiled floor as well as a tiled wall enclosure.

Commercially available shower pans are complete, ready-to-install units. They eliminate the need to create a mud sloped floor, a shower liner or tray, and tiling of the shower floor.

COMPOSITE SHOWER PANS. As composite shower pans are made from a number of different materials and constructed differently. I wanted to touch on each of the most common types. Composite shower pans fall into several material groups; cultured marble, fiberglass, acrylic, and solid surface. Generally all are made by fabrication of flat sheets, thermal-formed from a single piece of material, or molded or cast to form a one piece unit. The one-piece construction eliminates seams, which in turn eliminates potential leaks. Each has their pluses and minuses. Because beauty is in the eye of the beholder, I will not comment on appearance. All composite shower pans install on a flat, level floor and do not require the creation of a sloped mud base. Also, the cast or molded pans generally do not require the use of a plastic membrane.

Cultured marble and dressier versions, like cultured onyx and granite, tend to be the least costly. Cultured marble is made by spraying a gel-coat onto a mold. This coating is about 1/64 or less in thickness. The gel-coat is covered with pigmentation and then backed with calcium carbonate. The calcium carbonate gives the finished part its strength. Also, in the casting process it is infused with air pockets to lower its density and weight.

The cultured marble floor is cast separately from the sidewalls. Thus, the incorporation of a shower pan liner is essential to insure a watertight, leak free installation. Although widely used, the down side of cultured marble is that other than the gel-coat layer, the calcium carbonate is highly porous. Any crack or scratch through the gel-coat will allow water penetration. Other gel-coat characteristics include; yellowing, even without UV exposure; clouding from hot tap water; staining; crazing (fine hairline cracks); and it is not reparable when cracked or chipped.

Fiberglass is widely used as well. Fiberglass is strong, light weight and inexpensive. Many fiberglass manufacturers make one-piece shower pans and enclosures and one-piece combination tubs and showers with the wall enclosures. Similar to cultured marble, fiberglass is made with a gel-coat, then backed with pigment and chopped strands of fiberglass in a resin mixture. Generally the finished product is about 1/8 to 1/4 in thickness. The underside of the shower pan floor has webbing added to provide support to the floor. As the floor is not solid, the unsupported space between the webbing can flex. This flexing is especially noticeable with heavy loading or where one is standing between to the webbing. Over time, the flexing can cause material fatigue and cracking. Once a crack develops, the pan has failed.

Acrylic sheets are used to vacuum form shower pans, bathtubs, spas and many other items. The vacuum forming process begins with a 1/4 sheet of pigmented acrylic that is heated to a temperature that makes the acrylic ductile. The sheet is placed on a mold and stretched over the form to create the finished shape. The heating and stretching of the sheet causes a reduction in wall thickness. The reduction is directly proportional to the amount of stretching that occurs. With shower pans there is far less material reduction than with creating a tub or spa. The heating, stretching, and cooling of the material could also introduce stresses to the finished pan.

Like fiberglass pans, acrylic pans need support elements under the pan floor. A commonly used support element is polyurethane foam. The foam fills the void and eliminated the flexing of the pan floor. Acrylic sheet material is susceptible to crazing, minute surface cracking, and cracking when cleaned with many common cleaning chemicals. Should crazing occur, over time these cracks can lead to a pan failure.

Acrylic sheets have very different physical and chemical properties than acrylic solid surface materials. In addition to the acrylic resin used in solid surface, the solid surface material receives additional physical and chemical characteristics from the addition of alumina-tri-hydrate, or ATH. The ATH causes cleaners that adversely affect acrylic to have no affect on solid surface.

Solid surface shower pans are the top-of-the-line in physical and chemical characteristics as well as performance, reparability and a myriad of other features and benefits. The primary features of solid surface are it is non-porous, will not support the growth of mold, mildew, or bacteria, is available in a large variety of looks (some like natural granite) and colors, and is 100% repairable should chipping, scratching, or even cracking occur. Health departments throughout the country have approved solid surface materials for use in hospitals and food preparation areas for its resistance to bacterial growth, ease of cleaning and maintenance, and resistance to staining and contamination.

Some solid surface shower pan manufacturers fabricate their pans from sheet goods in a similar fashion as the acrylic shower pans. That is, they thermal form the pan floors by heating and stretching the material and then bond sidewalls and a threshold to the floor.

The Royal Stone brand of solid surface shower pans are the pans that I manufacture and will use to illustrate the simplicity and ease of installation that can be had when installing a composite shower pan. Unlike fabricated solid surface shower pans, the Royal Stone shower pans are a cast one-piece solid surface product. By casting the pan as a one-piece unit, there are no stresses introduced in the pan, and there are many other features engineered and designed into this pan.

The most obvious features are the large radius transition between the pan floor and its sidewalls. Secondly, the flange (also called a weep edge) is 1-1/2 tall. I have seen pans that do not incorporate an integral flange or have flanges 1/2 to 1 tall. The added height is designed to minimize, if not eliminate, any water being drawn up behind the wall surround panels that could cause water damage to the shower sub-structure.

Royal Stones pans have a minimum wall thickness of 1/2 and the webbing elements have a wide foot with large stress relieving radius corners between the pan floor and the webbing. All shower pans are engineered to support the weight of 3/4 thick (2 cm) granite slabs as well as all other commonly used wall materials like tile, fiberglass, acrylic, and solid surface panels. Finally, regardless of floor loading, the Royal Stone pan floor is so solid that it feels like one is standing on a rigid concrete floor. There is no perceptible flexing or oil-canning of the pan floor. Thus, there is no possibility of floor fatigue and cracking over time and the potential for pan failure is eliminated.

INSTALLATION IS FAST AND EASY. As I have already stated, composite pans install on a flat sub-floor. The following installation information may not apply to all types of composite shower pans. Specifically, I have direct knowledge of installing the cast one-piece solid surface shower pans that Royal Stone manufactures. Thus, the following directly applies to Royal Stones standard and custom shower pans. The same steps should also apply to other types of composite pans and other materials, however, follow the manufacturers recommended installation instructions.

As a manufacturer, I do not install pans. The photos included within this article were provided by a local installer. They were supplemented by photos of a different pan, for clarity of the installation process. Thus the different pan color and shape. Further, most of the photos were from a unique plumbing situation. The home had all of the plumbing above ground. Thus, a particleboard platform was built above the plumbing for the shower. The following installation information applies to concrete, plywood, particleboard, wood, etc. sub-floors at, above, or below grade.

Step #1 SUB-FLOOR PREPARATION: Using the template provided with the shower pan, place template on the floor and verify that the drain is in the correct location. If the drain is NOT properly located, relocate the drain. NOTE: Relocating the drain is usually far less expensive than having a custom pan cast to accommodate your existing drain location.

The hole in the sub-floor needs to be larger than the drain pipe. About a 6 round or square hole (about the size of a coffee can) is recommended. This larger opening allows room for the drain assembly that extends below the bottom of the pan. Most drain pipes are 2 PVC. The PVC pipe allows for some flexing within the 6 opening in the sub-floor. This flexing is desired and makes the pan installation easier. The PVC pipe should extend above the finished sub-floor by a minimum of 1/2 to about 3 to 4.

The sub-floor can be wood, plywood, concrete or any other rigid or well supported surface. The sub-floor must be level and free from debris. To assure a level floor, check the floor with a long level as shown in Fig. 1. The longer the level, the more likely that the sub-floor will be level at its greatest dimensions. Check front to back at the left and right sides and at the center. Do the same from side to side. Finally, check the diagonals. Fig. 2 indicates the location of the 8 readings that should be taken.

Depending on the results of the level measurements, some additional prep may be necessary. If the sub-floor is relatively flat, shims may be used to make the shower pan level. If the floor is uneven and out of level, pouring self leveling thin-set material may be necessary.

Once the sub-floor is level and the opening for the drain is correct, the setting of the shower pan is next.

Step #2 ATTACH DRAIN ASSEMBLY TO PAN: A standard 2 part Brass Drain Assembly is recommended, as shown in Fig. 3. This type of assembly should be readily available at any plumbing supply store or home improvement store. Royal Stone also sells this drain assembly. Disassemble the drain assembly. Keeping the components in order makes reassembly faster and easier.

Place the pan on saw horses or any raised platform that allows access to the top and bottom of the pan. Spray the drain opening with rubbing alcohol, Fig. 4. With a clean rag, wipe the surface and interior edge of the pre-cut drain opening, to remove any dust or other contaminants from the pans drain area. Around the drain opening apply a generous bead of 100% silicone, Fig. 5.

Insert Brass Drain Body, Part #5 of the Brass Drain Assembly into the drain hole, Fig. 6, and press firmly into place, Fig. 7.

Step #3 REMOVE EXCESS SILICONE: Remove the excess silicone from the Drain Body, Part #5. Spray an alcohol mist over the drain area and the silicone, Fig. 8. With a Dap-Cap, scoop away the excess silicone, Fig. 9. This step may have to be repeated several times to completely remove the silicone. Last, spray a mist of alcohol and wipe remaining film away from the Drain Body, Part #5, with a soft cloth.

Step #4 MOUNT DRAIN LOCKING RING: Attach the Drain Strainer, Part #1, to assure that the Drain Body, Part #5, is centered within the drain hole, Fig. 10. From the bottom side of the shower pan, attach Parts #6, 7, & 8 to Part #5. Tighten the Locking Ring, Part #8 until snug. DO NOT OVER TIGHTEN. Over tightening may crack the shower pan. Remove the Drain Strainer, Part #1, and set aside.

If any additional silicone has been squeezed out from between the shower pan drain and the Drain Body, Part #5, repeat Step #3 until all excess silicone has been removed.

HANDLING TIP: Using a set of glazers grips allows for easier handling and moving the pan into the proper location. If these are not available, brute force also works.

Step #5 DRY FIT THE SHOWER PAN: Lower the shower pan into place. Make sure that about 1/8 space exists between the shower pan flange and the studs. With the level, confirm that the pan is sitting flat on the floor as shown in Fig. 11 & 12. If additional shimming is required, lift pan and place shimming material where required. Lower the pan into place and check for level. Repeat until the pan is level.

CAUTION: When leaning and handling the shower pan, handle carefully to prevent damage to the shower pans flange.


A LEVEL PAN IS ESSENTIAL FOR PROPER DRAINAGE.

Step #6 SILICONE THE BOTTOM OF THE PAN: Lift pan and lean against one of the studded walls. Apply 100% silicone caulking to the webbing, Fig. 13, on the underside of the shower pan . Also, apply a thick silicone ring around the drain opening in the sub-floor, Fig. 14. If shims were used, silicone all shims into position on sub floor as required.

Step #7 SET SHOWER PAN: Lower shower pan into place. Check the pan for level. Press down as necessary to re-level the shower pan. Apply a silicone bead along the front edge of the threshold to seal the threshold of the pan to the sub-floor.

Step #8 CONNECT DRAIN PIPE TO DRAIN ASSEMBLY: Inject silicone completely around and between the drain pipe and the Brass Drain Body, Part #5, as shown in Fig. 15. Place the Rubber Gasket, Part #4 of the Drain Assembly, over the PVC pipe and slide down until the top of the Rubber Gasket, Part #4, is completely seated and is below the top of the Drain Assemble, Fig. 16. Screw the Locking Ring, Part #3 of the Drain Assembly onto the Drain Body, Part #5. Tighten the Locking Ring, Part #3, with the Tightening Tool, Part #2 until the Rubber Gasket, Part #4, is seated and tightly in place.

Step #9 TRIMMING THE PVC: The top of the PVC drain pipe MUST NOT extend above the Brass Drain Body, Part #5. If it is at the top of the Brass Drain Body, Part #5, or extends above the top, trim the PVC so that it is about 1/4 lower than the top of the Brass Drain Body, Part #5 but is taller than the top of the Rubber Gasket, Part #4. Cut the PVC pipe with a Dremel and a cut-off wheel.

If the Tightening Tool, Part #2 has not already been removed, remove it and press the Drain Strainer, Part #1, into place. The installation is complete. Excluding any sub-floor preparation, the installation should take about one hour or less.

Step #10 CURING: Let the shower pan set for 24 to 48 hours to allow the silicone to properly cure. Once cured, the wallboard and wall panels can be installed.

CAUTION: When attaching solid surface shower pans and wall panels, ONLY use 100% SILICONE. Other adhesives or caulks may harden. The loss of the elastic bond between the solid surface and other materials can cause stresses in the solid surface. In turn, these stresses may cause fractures of the part and void the manufacturers warranty.

Milton Lemberg is President and Marketing & Sales Manager of Royal Stone Industries. He holds a degree in mechanical engineering and is the engineer and designer of the shower pans Royal Stone offers. Any questions should be directed to Mr. Lemberg at milt@royalstoneind.com or to Royal Stone Industries, Inc., 2949 N. 31st Ave., Phoenix, AZ 85017. For further information on Royal Stones 22 standard shower pans, custom shaped shower pans, wall surround kits and accessories, and 48 standard colors, visit Royal stones web site at http://royalstoneind.com/products_Shower.asp

No comments: